

Инструмент из КНБ

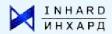
монолитные и напайные пластины из кубического нитрида бора

Компания INHARD предлагает Вам ознакомиться с одним из наших каталогов продукции – режущим инструментом из кубического нитрида бора КНБ (CBN).

Мы предлагаем различные сорта, геометрии и типоразмеры сменных напайных и монолитных пластин для токарной и фрезерной обработки характеризующихся высокой твердостью, прочностью и термостойкостью. Возможно изготовление с упрочняющим покрытием и без.

Инструменты из КНБ успешно применяются в тяжелом машиностроении, автомобилестроении, нефтегазовой отрасли, авиационно-космической промышленности и подходят для высокоскоростной обработки: термообработанной стали; спеченных твердых сплавов и чугуна; марганцовистой стали; материалов, восстановленных упрочняющими наплавленными сплавами, подшипниковой стали и др.

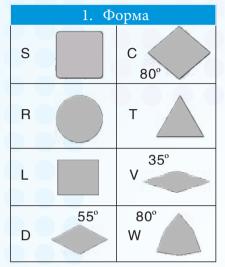
Будем рады видеть Вас в числе наших партнеров.


Использование инструментов из кубического нитрида бора во многих случаях позволяет осуществить обработку без использования СОЖ, т. е. так называемое «сухое» резание, что особенно важно при обработке тонкостенных и точных деталей, – а также уменьшает затраты и улучшает экологическую обстановку на рабочем месте, а также уменьшает вредные выбросы в окружающую среду.

Технические характеристики, область применения

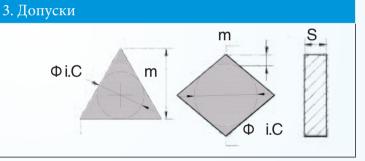
РСВ сорт	Твердость HV	Применение
HN100 HSN100	3300–3500	Имеет отличную износостойкость и ударопрочность. Высокоскоростная непрерывная или прерывистая обработка. Подходит для черновой с ударом и получистовой обработки серого, модифицированного и высокопрочного чугуна.
HN 200 HSN200	3500–3700	Имеет отличную износостойкость и термостойкость. Высокоскоростная непрерывная обработка. Подходит для чистовой и получистовой обработки легированного, модифицированного и высокопрочного чугуна.
HPN2001	3600–3800	Непрерывная и прерывистая обработка с легким ударом. Для высокопрочного, износостойкого чугуна, жаропрочных сплавов, сталей полученных методом порошковой металлургии.
HPN2002	3700–3850	Прерывистая обработка при тяжелых условиях. Для чугуна, сталей полученных методом порошковой металлургии. Низкоскоростная прерывистая обработка закаленных сталей, твердых материалов.
HN500 HSN500	3000–3300	Имеет отличную износостойкость и ударопрочность. Низкоскоростная прерывистая обработка. Подходит для черновой или получистовой обработки заготовок из закаленной стали, подшипниковой, штамповой, инструментальной стали и других материалов.
HN600 HSN600	2800–3200	Имеет отличную износостойкость и ударопрочность. Высокоскоростная непрерывная обработка. Подходит для получистовой или чистовой обработки деталей из закаленной стали, подшипниковой, литейной, быстрорежущей, инструментальной стали.
HPN6001	3000–3200	Подходит для высокоскоростной непрерывной или слегка прерывистой обработки твердых материалов, закаленных сталей, инструментальной стали, литейной стали и других материалов.
HN800	3300–3500	Имеет хорошую ударопрочность, износостойкость, шлифуемость. Подходит для тяжелой черновой обработки литейных сплавов с высокой твердостью, высокопрочного и износостойкого, ковкого чугуна и других материалов.
HPN6005	3000–3200	Подходит для среднескоростной непрерывной или слегка прерывистой ударной обработки твердых материалов, закаленных сталей, инструментальной стали, литейной стали.

www.inhard.ru

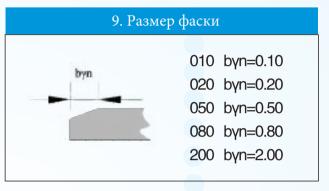

Обозначение сменных пластин

12	04	04
5	6	7

T	010	20
8	9	10

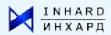

R	A
11	12

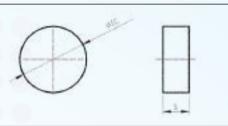
Кодировки	Разме	ер допусн	ка, мм
Кодировки	m	S	ic
E	± 0.025	± 0.025	± 0.025
G	± 0.025	± 0.13	± 0.025
М	± 0.08	± 0.13	± 0.05
U	± 0.13	± 0.13	± 0.08



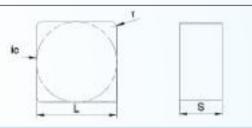
	5. Кодировка длины режущей кромки												
	С	D	R	S	Т	V	W	L					
iC MM													
6.35	06	07	06		11	11							
8		09	08										
9.525	09	11	09	09	16	16	06						
12.7	12	15	12	12	22		80						
14				14									
15.875	16		15	15									
16.0			16										
18.75								21.97					
19.05	19		19	19									
20.0			20	20									

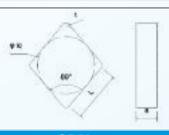
	6. Толщин	ia	
S.	02=2.38 03=3.18 T3=3.97 04=4.76	05=5.56 06=6.35 T6=6.80	07=7.94 08=8.0 10=10.0

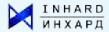




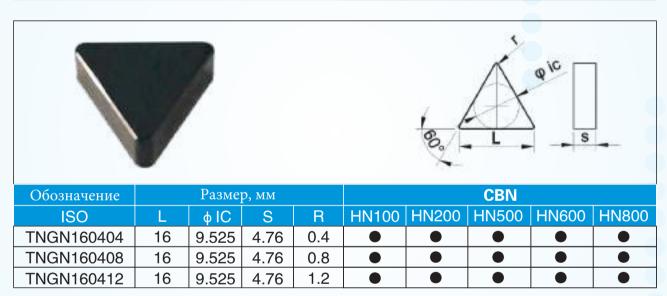
12. K	12. Кодировка обозначения пластин, количество напайных кромок											
A B C D E												
напайная вершина - один угол	напайная вершина - два угла	напайная вершина - один угол - одна сторона	напайная вершина - два угла - одна сторона	специальная								


Монолитные пластины


Обозначение		Разме	ер, мм				CBN		
ISO	L	φІС	S	R	HN100	HN200	HN500	HN600	HN800
RNGN201000	20	20	10	0			•	•	
RNGN200700	20	20	7.94	0		•	•	•	•
RNGN190700	19.05	19.05	7.94	0		•	•		
RNGN120700	12.7	12.7	7.94	0		•	•		
RNGN120400	12.7	12.7	4.76	0			•		
RNGN090400	9.525	9.525	4.76	0					



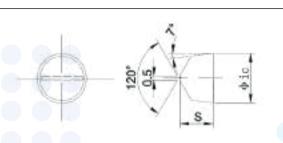
Обозначение		Разме	ер, мм				CBN		
ISO	L	φІС	S	R	HN100	HN200	HN500	HN600	HN800
SNGN201012	20	20	10	1.2			•	•	
SNGN190712	19.05	19.05	7.94	1.2	•	•	•	•	•
SNGN150716	15.875	15.875	7.94	1.6	•			•	•
SNGN120712	12.7	12.7	7.94	1.2		•	•	•	
SNGN120408	12.7	12.7	4.76	0.8					
SNGN090304	9.525	9.525	3.18	0.4	•			•	•



Обозначение		Разме	р, мм				CBN		
ISO	L	φІС	S	R	HN100	HN200	HN500	HN600	HN800
CNGN120408	12.7	12.7	4.76	0.8			•		•
CNGN120712	12.7	12.7	7.94	1.2			•	•	•
CNGN160708	15.875	15.875	7.94	8.0		•	•	•	•

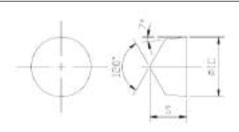
Обозначение	Обозначение Размер, мм СВN								
ISO	L	φІС	S	R	HN100	HN200	HN500	HN600	HN800
WNGN080404	8	12.7	4.76	0.4		•	•	•	
WNGN080408	8	12.7	4.76	0.8					
WNGN080412	8	12.7	4.76	1.2		•	•		

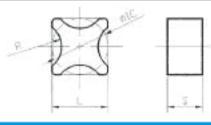
Примечание:

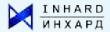

Для всех пластин толщиной ≤ 4,76 мм возможно изготовление со сквозным отверстием и зенковкой.

Возможно изготовление других типоразмеров по ISO под заказ.

Срок изготовления и поставки 7-28 дней.




Обозначение	Размер, мм			Обозначение Размер, мм СВП					
ISO	L	φІС	S	R	HN100	HN200	HN500	HN600	HN800
RCGX090700-V	0	9.525	7.94	0			•	•	
RCGX120700-V	0	12.7	7.94	0		•	•	•	
RCGX201000-V	0	20	10	0		•	•	•	

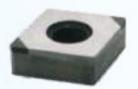


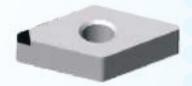
Обозначение	Размер, мм					CBN			
ISO	L	φІС	S	R	HN100	HN200	HN500	HN600	HN800
RCGX090700-Z	0	9.525	7.94	0		•	•	•	•
RCGX120700-Z	0	12.7	7.94	0	•	•	•	•	•
RCGX201000-Z	0	20	10	0	•	•	•	•	•



Обозначение	Размер, мм					CBN			
ISO	L	φІС	S	R	HN100	HN200	HN500	HN600	HN800
SNMX120707	12.7	12.7	7.94	0.7					
SNMX120709	12.7	12.7	7.94	0.9					
SNMX120712	12.7	12.7	7.94	1.2					
SNMX120715	12.7	12.7	7.94	1.5					
SNMX120720	12.7	12.7	7.94	2.0			•		
SNMX120725	12.7	12.7	7.94	2.5			•	•	·

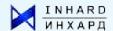
Серия пластин со вставками HSN




Формы и сорт пластин. Возможно изготовление других типоразмеров по ISO.

Обозначение			CBN		
ISO	HSN100	HSN200	HSN500	HSN600	
CNGA1204	•	•	•	•	
SNGA1204	•	•	•	•	
WNGA0804	•	•	•	•	
TNGA1604	•	•	•	•	
VNGA1604	•	•	•	•	
DNGA1504	•	•	•	•	

Серия напайных пластин HPN

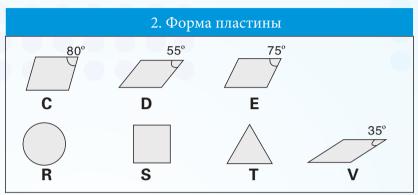


Формы и сорт пластин. Возможно изготовление других типоразмеров по ISO.

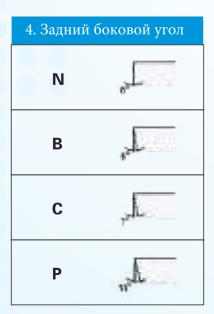
Обозначение			CBN		
ISO	HPN2001	HPN2002	HPN6001	HPN6002	HPN6005
CNGA1204	•	•	•	•	•
WNGA0804	•	•	•	•	•
TNGA1604	•	•	•	•	•
VNGA1604	•	•	•	•	•
DNGA1504	•	•	•	•	•
CCGW09T3	•	•	•	•	•
VCGW1103	•	•	•	•	•
VCGW1604	•	•	•	•	•
DCGW11T3	•	•	•	•	•
TCGW1103	•	•	•	•	•

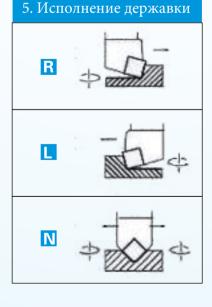
Державки. Обозначение

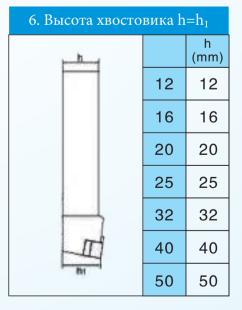
C


C

3


4


R 5 **25**

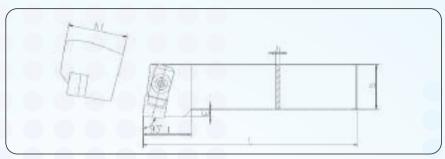


7. Ширина хвостовика

d (mm)

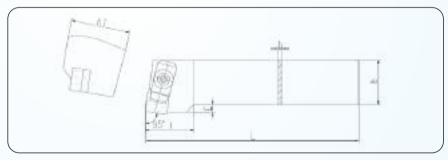
8. Длина инструмента							
		h (mm)					
<u>d</u>	D	60					
	Ш	70					
	F	80					
	Ι	100					
	K	125					
	М	150					
	Z	160					
	Р	170					
0	R	200					
100	S	250					
12	Т	300					
	U	350					

9. Кодировка длины режущей кромки пластины										
Вписанная окружность	Q	Ф								
d (mm)	R,S		T (60°)	C (80°)	E (75°)	D (55°)	V (35°)			
5.56			09							
6.35	06		11							
7.94	07		13							
9.52	09		16	09		11	16			
12.70	12		22	12	13	15	22			
15.87	15		27	16		19				
19.05	19		33	19		23				
25.40	25		44	25		31				



11. Размер пластин						
s						
Код	s (mm)					
3	3.18					
4	4.76					
6	6.35					
7	7.94					
9	9.52					

Державки для наружного точения



93⁰

Державки		Пластины				
держивки	h=h1	I	b	L	Е	11/14/01/11/11
CSUNR/L2020	20	30	20	100	5	
CSUNR/L2525	25	30	25	125	5	SNMN0903
CSUNR/L3030	30	35	30	150	5	SNMN1204
CSUNR/L3225	32	35	25	170	7	SNMN1207
CSUNR/L3232	32	35	32	200	7	SNMN1507
CSUNR/L4040	40	38	40		7	

 95^{0}

Примечание:

Державки, не включенные в список, поставляются в соответствии с требованиями заказчика.

Области применения:

Обработка зубчатых колес, шестерен и колец подшипника

Обработка легированных сталей и чугунов HRC 56-67

Обработка валков, вала-шестерни, износостойкий чугун, сталь Гадфильда

Применение инструмента из КНБ - примеры

Наименование	Обрабатываемый материал	Твердость	Пластина	Режимы резания
Крыльчатка	Износостойкий белый чугун	57 HRC	HN800 RNGN120400	a _p =2-3мм v _c =55м/мин f=0.3мм/об
Броня коническая	Высокомарган- цовистая сталь	300 HB	HN800 SNMN150716	a _p =5мм v _с =60м/мин f=0.5мм/об
Задний тормозной диск	Серый чугун	190-220 HB	HN200 SNGN120712	$a_p = 2-3$ мм $v_c = 300-650$ м/мин $f = 0.5$ мм/об
Тормозной барабан	Серый чугун	HB 210-230	HN200 CNGN120712	a_p =1.5–2мм v_c =1130м/мин f =0.5мм/об
Блок цилиндров ДВС	Серый чугун	HB 230	HN100 CNMN120412	a_p =1-3мм v_c =800-1000м/мин f =0.5-0.7мм/об
Калиброванные валки	Быстрорежущая сталь	57 HRC	HN500 RCMX120700V	a _p =6мм v _c =30м/мин f=0.2мм/об
Валок	Легированный износостойкий чугун	56 HRC	HN800 RNMN201000	a _p =12мм v _c =50м/мин f=0.7мм/об
Фланец	Серый чугун	220 HB	HSN200 WNGA080412	a _p =1.5мм v _c =830м/мин f=0.3мм/об
Цилиндр компрессора кондиционера	Серый чугун	HB 220-240	HN100 SNGN120412	$a_p = 1.5$ мм $v_c = 690$ м/мин $f = 0.3$ мм/об
Кольцо подшипника	40ХФА	HRC 47-55	HN500/800 RCMX090700	a _p =0.5мм v _c =90м/мин f=0.6мм/об
Карданный вал	25ХГМ	62-65 HRC	HPN6001 VNGA160408	a _p =0.мм v _c =132м/мин f=0.15мм/об
Автомобильная коробка передач	18ХГТ	58-65 HRC	HPN6001 TNGA160408	$a_p = 0.1$ мм $v_c = 180$ м/мин $f = 0.08$ мм/об
Подшипник	ШХ15	58-62 HRC	HSN600 DNGA150408	$a_p = 0.5$ мм $v_c = 100$ м/мин $f = 0.1$ мм/об
Ступица подшипнико- вого узла	65Г	58-63 HRC	HSN600 VNGA160408	a _p =0.15мм v _c =185м/мин f=0.1мм/об

Упрочняющие покрытия пластин из КНБ

Многослойные упрочняющие покрытия позволяют добиться увеличения стойкости режущего инструмента и его работоспособности. Они дают возможность увеличить срок службы инструмента в несколько раз. Возрастает скорость и производительность обработки.

Наш ассортимент пластин CBN состоит в основном из пластин без упрочняющего покрытия, но также из пластин с PVD покрытием для обеспечения более высоких эксплуатационных характеристик.

Наши покрытия обеспечивают следующие преимущества:

- ① более стабильная и постоянная стойкость инструмента в течение длительного времени
- 2 надёжная и эффективная обработка с хорошим качеством обработанной поверхности
- ③ снижение себестоимости деталей благодаря однопроходной и высокой скорости резания
- 4 постоянная размерная точность

Сплав С05.

Нитридное износостойкое покрытие. Хорошо зарекомендовало себя при сухой обработке и на высоких скоростях резания. Покрытие С05 позволяет улучшить адгезию, повысить ударную прочность, снизить коэффициент трения, обладает повышенной трещиностойкостью.

Сплав С06.

Нанокомпозитное покрытие с высокой теплостойкостью и твердостью (HV 3600). Высокоскоростная обработка без использования СОЖ. Покрытие снижает вероятность кратерного износа. Рекомендовано для обработки жаропрочных сплавов, марганцовистых сталей и высокопрочных материалов.

Сплав С07.

Покрытие с высокой износостойкостью, твердостью и сопротивляемостью к окислению. Высокоскоростная обработка. Эффективная обработка титановых и хромникелевых сплавов. Высокие прочностные свойства.

www.inhard.ru

Меры предосторожности при использовании инструмента из КНБ

1. Выбор режимов резания

Обратитесь к таблице ниже для использования режущего инструмента CBN.

(Параметры должны быть скорректированы в соответствии с фактическими условиями обработки и типом заготовки)

Материал заготовки	V _c (_м /мин)	f _r (мм/об)	а р (мм)
Серый чугун	500~1500	0.5~0.8	0.25~1.0
Ковкий чугун	50~120	0.1~0.6	0.1~1.2
Закаленная сталь (45~65HRC)	60~150	0.2~0.3	0.6~2.5
Упрочненные матер. (>35HRC)	80~240	0.12~0.25	0.5~2.5
Твердый сплав (Со%>17%)	20~40	0.1~0.25	0.1~0.5
Марганцовистая сталь	140~200	0.3~0.7	0.2~2.9

2. Требования к технологическим системам

Из-за высокой радиальной силы резания — жесткость станка и системы должны быть достаточными. Во избежание дребезжания, сколов и деформации во время обработки вылет инструмента должен быть как можно меньше, а соотношение длины к диаметру 2: 1 рекомендуется при зажиме на одном конце, и максимальное значение не должно превышать 4: 1. Если есть поддержка задней бабки, вылет может быть соответственно увеличен.

3. Применение СОЖ

Использование инструментов из кубического нитрида бора во многих случаях позволяет осуществить обработку без использования СОЖ, т. е. так называемое «сухое» резание, что особенно важно при обработке тонкостенных и точных деталей, – а также уменьшает затраты и улучшает экологическую обстановку на рабочем месте, а также уменьшает вредные выбросы в окружающую среду.

Охлаждение требуется в особых случаях:

- 1 требуется принудительное прерывание;
- 2 при условии сохранения термостабильности;
- 3 при резке крупногабаритных заготовок необходимо своевременно снижать температуру резания.
- Примечание: Если охлаждающая жидкость заполнена, ее нельзя прерывать в течение всего процесса резания.

4. Геометрия и срок службы инструмента PCBN

Инструмент PCBN обычно использует отрицательный передний угол, большой задний угол и отрицательную фаску и обработку шлифования для повышения прочности режущей кромки и износостойкости.

Кроме того, очень важно точно определить срок службы PCBN. Если износ инструмента сильный, усилие резания и температура резания увеличиваются, и во время резания трудно контролировать размер заготовки и целостность поверхности. Рекомендуется, чтобы при степени износа на боковой поверхности инструмента PCBN 0,3 ~ 0,6 мм (минимальное значение при чистовой обработке) инструмент был отшлифован или заменен.

5. Рекомендации по инструментальной обработке PCBN

Для деталей с высокой твердостью и неправильной формой рекомендуется использовать пластины для однократной шероховатости холодного твердого слоя и снятия фаски на режущих и режущих концах, для уменьшения ударной силы инструмента PCBN, чтобы предотвратить трещины кромки и привести к отказу.

Распространенные виды износа и рекомендации по их устранению

Износ режущего инструмента в процессе резания протекает разнообразно в связи с различными условиями его работы. Эти условия могут резко меняться в зависимости от обрабатываемого материала, скорости резания, глубины резания и т.д. Практически можно наблюдать несколько видов износа режущего инструмента.

Основными факторами, влияющими на износ пластин из КНБ являются количество резки, неправильный выбор параметров геометрии пластины, недостаточная жесткость системы СПИД и т. д. Чтобы продлить срок службы инструментов PCBN, можно предпринять следующие конкретные действия:

1. Износ задней поверхности пластины

Рекомендации: ① увеличить скорость резания; ② увеличить скорость подачи заготовки, ③ увеличить глубину резания;

④ проверьте высоту центра резания; ⑤ если обрабатываемый материал – чугун, проверьте содержание феррита.

2. Образование лунки

Рекомендации: ① уменьшить скорость резания; ② уменьшить подачу.

3. Образование бороздки

Рекомендации: ① увеличить скорость резания; ② уменьшить подачу; ③ улучшить угол резания инструмента (например, с помощью круглой пластины); ④ использовать пластины с фаской.

4. Разрушение режущей кромки

Рекомендации: ① используйте пластину с увеличенным радиусом вершины; ② уменьшите скорость резания или по возможности избегайте прерывистой обработки; ③ увеличьте жесткость системы СПИД; ④ если прерывистая обработка неизбежна (например, на обрабатываемой поверхности есть отверстия, канавки и т. д.), необходимо выполнить предварительную обработку на соответствующей входной части резания; ⑤ измените скорость резания, чтобы оптимизировать условия резания и избежать вибрации.

5. Отслаивание передней поверхности пластины

Рекомендации: ① уменьшить угол резания (предпочтительно менее 20°); ② уменьшить подачу; ③ избегать использовать охлаждающую жидкость; ④ увеличить скорость резания.

6. Выкрашивание кромки

Рекомендации: ① уменьшить г лубину резания или припуск на обработку, чтобы уменьшить нагрузку на резание; ② уменьшить скорость резания; ③ увеличить радиус вершины (целесообразно использовать круглые пластины); ④ использовать пластины с фаской; ⑤ проверить правильность и надежность установки пластины; ⑥ проверить высоту центра резания.

Успех использования пластин КНБ зависит не только от качества самого инструмента, но также от всех аспектов всей системы обработки, таких как производительность станка, надежность зажима заготовки, жесткость системы СПИД, рациональность выбора инструмента. Выбор параметров резания будет влиять на эффект резания пластинами КНБ. Невозможно избежать износа инструмента полностью. Только при правильном и разумном использовании инструментов РСВN мы можем повысить эффективность обработки, снизить производственные затраты и получить максимальные технические и экономические выгоды.